254 research outputs found

    Eight-dimensional Polarization-ring-switching Modulation Formats

    Full text link
    We propose two 8-dimensional (8D) modulation formats (8D-2048PRS-T1 and 8D-2048PRS-T2) with a spectral efficiency of 5.5 bit/4D-sym, where the 8 dimensions are obtained from two time slots and two polarizations. Both formats provide a higher tolerance to nonlinearity by selecting symbols with nonidentical states of polarization (SOPs) in two time slots. The performance of these novel 8D modulation formats is assessed in terms of the effective signal-to-noise ratio (SNR) and normalized generalized mutual information. 8D-2048PRS-T1 is more suitable for high SNRs, while 8D-2048PRS-T2 is shown to be more tolerant to nonlinearities. A sensitivity improvement of at least 0.25 dB is demonstrated by maximizing normalized generalized mutual information (NGMI). For a long-haul nonlinear optical fiber transmission system, the benefit of mitigating the nonlinearity is demonstrated and a reach increase of 6.7% (560 km) over time-domain hybrid four-dimensional two-amplitude eight-phase shift keying (TDH-4D-2A8PSK) is observed

    Increasing Achievable Information Rates via Geometric Shaping

    Full text link
    Achievable information rates are used as a metric to design novel modulation formats via geometric shaping. The proposed geometrically shaped 256-ary constellation achieves SNR gains of up to 1.18 dB.Comment: Additional references have been adde

    Polarization-ring-switching for nonlinearity-tolerant geometrically-shaped four-dimensional formats maximizing generalized mutual information

    Get PDF
    In this paper, a new four-dimensional 64-ary polarization ring switching (4D-64PRS) modulation format with a spectral efficiency of 6 bit/4D-sym is introduced. The format is designed by maximizing the generalized mutual information (GMI) and by imposing a constant-modulus on the 4D structure. The proposed format yields an improved performance with respect to state-of-the-art geometrically shaped modulation formats for bit-interleaved coded modulation systems at the same spectral efficiency. Unlike previously published results, the coordinates of the constellation points and the binary labeling of the constellation are jointly optimized. When compared with polarization-multiplexed 8-ary quadrature-amplitude modulation (PM-8QAM), gains of up to 0.7 dB in signal-to-noise ratio are observed in the additive white Gaussian noise (AWGN) channel. For a long-haul nonlinear optical fiber system of 8,000 km, gains of up to 0.27 bit/4D-sym (5.5% data capacity increase) are observed. These gains translate into a reach increase of approximately 16% (1,100 km). The proposed modulation format is also shown to be more tolerant to nonlinearities than PM-8QAM. Results with LDPC codes are also presented, which confirm the gains predicted by the GMI.Comment: 12 pages, 12 figure

    11,700 km Transmission at 4.8 bit/4D-sym via Four-dimensional Geometrically-shaped Polarization-Ring-Switching Modulation

    Full text link
    Using a novel geometrically-shaped four-dimensional modulation format, we transmitted 11x200 Gbit/s DWDM at 4.8 bit/4D-sym over 7,925 km and 11,700 km using EDFA-only and hybrid amplification, respectively. A reach increase of 16% is achieved over PM-8QAM.Comment: Contributed paper for OECC/PSC. Tue. Jul 9, 2019 9:00 AM - 10:30 AM JS

    Turbulence Characterisation for Free Space Optical Communication Using Off-Axis Digital Holography

    Get PDF
    An optical turbulence generator is characterised using digital holography, measuring the amplitude and phase of the perturbed optical field and enabling analysis of turbulence effects and development of mitigation techniques

    Mode-dependent Loss and Gain Emulation in Coupled SDM Transmission

    Get PDF
    Space-division multiplexing (SDM) is currently the only solution to cope with the exponential growth of data traffic in optical transmission networks. The performance of long-haul SDM transmission is fundamentally limited by mode-dependent loss (MDL) and mode-dependent gain (MDG) generated in components and amplifiers. To enable the study of MDL/MDG effects in SDM systems as well as MDL/MDG estimation methods within the context of experimental setups, we evaluate an MDL/MDG emulator based on variable optical attenuators (VOAs) and photonic lanterns. We assess MDL/MDG emulation in different attenuation scenarios and demonstrate the capability of the emulator to artificially introduce a wide range of MDL/MDG in a short-reach 3-mode transmission system
    • …
    corecore